Quantcast
Channel: dual – RobertLovesPi's Blog
Viewing all 76 articles
Browse latest View live

A Polyhedron Featuring Sixty Octagons and Sixty Triangles

$
0
0

A Polyhedron Featuring Sixty Octagons and Sixty Triangles

If someone had asked me if it were possible to form a symmetric polyhedra out of irregular triangles and octagons, using exactly sixty of one type each, I would have guessed that it were not possible. Why does it work here? Part of the reason is that each triangle borders three octagons, and each octagon borders three triangles — a necessary, but not sufficient, condition. This is a partial truncation of an isomorph of the pentagonal hexacontahedron, the dual of the snub dodecahedron. As such, no surprise — it’s chiral.

This was made while stumbling about in the wilderness of the infinite number of possible polyhedra using Stella 4d: Polyhedron Navigator. You can get it here: http://www.software3d.com/Stella.php.


Filed under: Mathematics Tagged: chiral, dual, enantiomer, geometry, mathematics, octagon, pentagonal hexacontahedron, polyhedra, polyhedron, sixty, snub dodecahedron, triangle

Starry Dual Polyhedron

The Compound of the Truncated Dodecahedron and Its Dual, the Triakis Icosahedron

Wavy Tessellation

An Icosahedron, Augmented with Twenty Triangular Cupolae, Together with Its Dual

Two Polyhedral Compounds

$
0
0

Compound of the RTC and a strombic hexacontahedron

The image above is a compound of the rhombic triacontahedron (the dual of the icosidodecahedron) and a strombic hexacontahedron (the dual of the rhombicosidodecahedron). Below, you’ll find a compound of six square-based pyramids, all with their “centers of mass” (assuming uniform density) displaced, from the compound’s center, by equal amounts. In response to a request I have received, polyhedral images which rotate more slowly are coming soon . . . after I have finished posting my backlog of already-produced polyhedral .gif files, since there is no way to slow them down after they are already created.

Compound of Twelve Square-based pyramids

The program I use for these polyhedral investigations is Stella 4d, available at www.software3d.com/Stella.php.


Filed under: Mathematics, Uncategorized Tagged: compound, dual, geometry, mathematics, polyhedra, polyhedral, polyhedron, pyramid, rhombic triacontahedron, strombic hexacontahedron, strombic hexecontahedron

A Great Dodecahedron, Augmented with Twelve Icosidodecahedra, and Its Dual

Two Wrinkled Polyhedra, and One of Their Duals

$
0
0

wrinkled polyhedronI recently stumbled upon some wrinkled polyhedra. Such polyhedra have an unusually high amount of surface area, compared to their volumes, relative to most more-familiar polyhedra. The next one shown, below, is the dual of the first one. shown, above.

wrinkled polyhedron dual

The two above were made before I received a request to slow down the spin-rate of the polyhedra I post, most of which, in the past, have had a rotational period of four seconds. This next one has the new, slower spin-rate (with T = 6 seconds) which I am now using:

another wrinkled polyhedron

I hope all of my readers prefer this change, especially since it takes 50% more memory, per file, to slow these down to 2/3 their previous rotational speed.

These were all made using Stella 4d, software which can be tried or bought here: http://www.software3d.com/Stella.php.


Filed under: Mathematics Tagged: dual, geometry, mathematics, polyhedra, polyhedron, wrikle, wrinkled

A Hollow Octahedron Made of Rhombic Dodecahedra, with Variations

$
0
0

hOLLOW oCTAHEDRON mADE OF Rhombic Dodeca

The original polyhedral cluster I built using Stella 4d (available here) is above. Below is its 29th stellation.

hOLLOW oCTAHEDRON mADE OF Rhombic Dodeca 29th stellation

And the 30th stellation, as well:

hOLLOW oCTAHEDRON mADE OF Rhombic Dodeca 30th stellation

This is the original polyhedral cluster’s dual:

hOLLOW oCTAHEDRON mADE OF Rhombic Dodeca dual

The next image is a variant of the original polyhedral cluster, rendered with only its edges, but not faces or vertices, visible. I wish I could remember exactly how I made this variant, but I simply cannot recall the exact methods I used.

hollow octahedron variant

This is the dual of the polyhedron shown immediately above, rendered in the same manner:

hollow object made of cubes -- dual of hollow octahedron variantThis is a compound of the two dual polyhedra right before this sentence.

hollow octahedron variant compound of it and dual


Filed under: Mathematics Tagged: compound, dual, geometry, hollow, mathematics, octahedron, polyhedra, polyhedron, rhombic dodecahedron

A Cluster-Polyhedron Formed By 15 Truncated Octahedra, Plus Variations

$
0
0

15 Trunc Octa

To form the cluster-polyhedron above, I started with one truncated octahedron in the center, and then augmented each of its fourteen faces with another truncated octahedron. Since the truncated octahedron is a space-filling polyhedron, this cluster-polyhedron has no gaps, nor overlaps. The same cluster-polyhedron is below, but colored differently:  each set of parallel faces gets a color of its own.

15 Trunc Octa color by face unless parallel

This is the cluster-polyhedron’s sixth stellation, using the same coloring-scheme as in the last image:

15 Trunc Octa color by face unless parallel 6th stellation

Here’s the sixth stellation again, but with the coloring scheme that Stella 4d:  Polyhedron Navigator (the program I use to make these images) calls “color by face type.” If you’d like to try Stella for yourself, you can do so here.

15 Trunc Octa color by face type 6th stellation

Also colored by face-type, here are the 12th, 19th, and 86th stellations.

15 Trunc Octa color by face type 12th stellation

15 Trunc Octa color by face type 19th stellation

15 Trunc Octa color by face type 86th stellation

Leaving stellations now, and returning to the original cluster-polyhedron, here is its dual.

15 Trunc Octa dual

This image reveals little about this dual, however, for much of its structure is internal. So that this internal structure may be seen, here is the same polyhedron, but with only its edges visible.

15 Trunc Octa dual wirre-frame

Finally, here is an edge-rendering of the original cluster-polyhedron, but with vertices shown as well — just not the faces.

15 Trunc Octa wirre-frame


Filed under: Mathematics Tagged: cluster, dual, geometry, mathematics, polyhedra, polyhedral, polyhedron, stellation, truncated octahedron

A Zonish Icosahedron, and Some of Its “Relatives”

$
0
0

To begin this, I used Stella 4d (available here) to create a zonish polyhedron from the icosahedron, by adding zones along the x-, y-, and z-axes. The result has less symmetry than the original, but it is symmetry of a type I find particularly interesting.

zonohedrified icosahedron xyz

After making that figure, I began stellating it, and found a number of interesting polyhedra in this polyhedron’s stellation-series. This is the second such stellation:

zonohedrified icosahedron xyz 2nd stellation

This is the 18th stellation:

zonohedrified icosahedron xyz 18th stellation

The next one, the 20th stellation, is simply a distorted version of the Platonic dodecahedron.

zonohedrified icosahedron xyz 20th stellation

This one is the 22nd stellation:

zonohedrified icosahedron xyz 22nd stellation

This is the 30th stellation:

zonohedrified icosahedron xyz 30th stellation

The next really interesting stellation I found was the 69th:

zonohedrified icosahedron xyz 69th stellation

At this point, I returned to the original polyhedron at the top of this post, and examined its dual. It has 24 faces, all of which are quadrilaterals.

zonohedrified icosahedron xyz dual

This is the third stellation of this dual — and another distorted Platonic dodecahedron.

zonohedrified icosahedron xyz dual 3rd stellation

This is the dual’s 7th stellation:

zonohedrified icosahedron xyz dual 7th stellation

And this one is the dual’s 18th stellation:

zonohedrified icosahedron xyz dual 18th stellation

At this point, I took the convex hull of this 18th stellation of the original polyhedron’s dual, and here’s what appeared:

Convex hull of 18th stellation of dual of zonish icosahedron xyz

Here is this convex hull’s dual:

dual of Convex hull of 18th stellation of dual of zonish icosahedron xyz

Stella 4d, the program I use to make these (available here), has a built-in “try to make faces regular” function. When possible, it works quite well, but making the faces of a polyhedron regular, or even close to regular, is not always possible. I tried it on the polyhedron immediately above, and obtained this interesting result:

spring model of Dual of convex hull of stellation of zonish xyz icosahedron

While interesting, this also struck me as a dead end, so I returned to the red-and-yellow convex hull which is the third image above, from right here, and started stellating it. At the 19th stellation of this convex hull, I found this:

19th stellation of Convex hull of 18th stellation of dual of zonish icosahedron xyz

I also found an interesting polyhedron as the 19th stellation of the dual which is three images above:

19th stellation of dual of Convex hull of 18th stellation of dual of zonish icosahedron xyz


Filed under: Mathematics Tagged: dual, geometry, icosahedron, mathematics, polyhedra, polyhedral, polyhedron, stellation, zonish, zonohedrification, zonohedron

A Polyhedral Journey, Beginning with a Near-Miss Johnson Solid Featuring Enneagons

$
0
0

When Norman Johnson first found, and named, all the Johnson solids in the latter 1960s, he came across a number of “near-misses” — polyhedra which are almost Johnson solids. If you aren’t familiar with the Johnson solids, you can find a definition of them here. The “near-miss” which is most well-known features regular enneagons (nine-sided polygons):

ennneagonal-faced near-miss

This is the dual of the above polyhedron:

ennneagonal-faced near-miss dual

As with all polyhedra and their duals, a compound can be made of these two polyhedra, and here it is:

ennneagonal-faced near-miss base=dual compound

Finding this polyhedron interesting, I proceeded to use Stella 4d (polyhedron-manipulation software, available at http://www.software3d.com/Stella.php) to make its convex hull.

Convex hull of near-miss base-dual compound

Here, then, is the dual of this convex hull:

dual of Convex hull of near-miss base-dual compound

Stella 4d has a “try to make faces regular” function, and I next used it on the polyhedron immediately above. If this function cannot work, though — because making the faces regular is mathematically impossible — one sometimes gets completely unexpected, and interesting, results. Such was the case here.

attempt no make latest polyhedron have regular faces

Next, I found the dual of this latest polyhedron.

attempt no make latest polyhedron have regular faces's dual

The above polyhedron’s “wrinkled” appearance completely surprised me. The next thing I did to change it, once more, was to create this wrinkled polyhedron’s convex hull. A convex hull of a non-convex polyhedron is simply the smallest convex polyhedron which can contain the non-convex polyhedron, and this process often has interesting results.

Convex hull of wrinkled dual

Next, I created this latest polyhedron’s dual:

dual of Convex hull of wrinkled dual

I then attempted “try to make faces regular” again, and, once more, had unexpected and interesting results:

dual of latest polyhedron

The next step was to take the convex hull of this latest polyhedron. In the result, below, all of the faces are kites — two sets of twenty-four each.

convex hull of last polyhedron with two sets of two dozen kites each

I next stellated this kite-faced polyhedron 33 times, looking for an interesting result, and found this:

33rd stellation of latest polyhedron

This looked like a compound to me, so I told Stella 4d to color it as a compound, if possible, and, sure enough, it worked.

33rd stellation of latest polyhedron colored as a compound

The components of this compound looked like triakis tetrahedra to me. The triakis tetrahedron, shown below, is the dual of the truncated tetrahedron. However, I checked the angle measurement of a face, and the components of the above compound-dual are only close, but not quite, to being the same as the true triakis tetrahedron, which is shown below.

Triakistetra -- ANGLES AREN'T QUITE A MATCH for last polyhedron

This seemed like a logical place to end my latest journey through the world of polyhedra, so I did.


Filed under: Mathematics Tagged: compound, convex hull, dual, enneagon, geometry, journey, mathematics, near-miss, nonagon, polyhedra, polyhedral, polyhedron, stellation, triakis tetrahedron

An Experiment Involving Augmentation of Octahedra with More Octahedra, Etc.

$
0
0

I’m going to start this experiment with a single octahedron, with faces in two colors, placed so that two faces which share an edge are always of different colors.

1

Next, I will augment the red faces — and only the red faces — with identical octahedra.

2

The regions with four blue, adjacent faces look as though they might hold icosahedra — but I checked, and they don’t quite fit. I will therefore continue the same process — augmenting only the red faces with more octahedra of the original type.

3

I’ve now decided that I definitely like this game, so I’ll keep playing it.

4

Immediately above, at the fourth of these images, some of the octahedra have started to overlap slightly, but I’m choosing to not be bothered by that — I’m continuing the now-established pattern, just in order to see where it takes me.

5

The regions of overlap are now far more obvious, but I’m continuing, anyway. Why? Because this is fun, that’s why! Right now, Stella 4d, the program I use to do these polyhedral manipulations, is chugging away on the next one. (This program is avilable at http://www.software3.com/Stella.php.) Ah, it’s ready — here it is!

6

Rather than repeat this process again, I now have another question: what would the convex hull of this figure look like? (A convex hull of a non-convex polyhedron is the smallest convex polyhedron which can contain a given non-convex polyhedron.) With Stella 4d, that’s easily answered.

Convex hull

I must admit this: that was nothing like what I expected — but such unexpected discoveries are a large part of what makes these polyhedral investigations with Stella 4d so much fun. And now, to close this particular polyhedral journey, I will have Stella 4d produce, for me, the dual of the convex hull shown above. (In case you aren’t familiar with duality regarding polyhedra, it describes the relationship between the octahedron, with which this post began, and the familar cube. Basically, with duals, faces and verticies are “flipped” over edges, although that is an extremely informal and imprecise way to describe the at the process.)

dual of Convex hull

And with that, my friends, I bid you good night!


Filed under: Mathematics Tagged: augment, augmentation, convex hull, dual, experiment, geometry, mathematics, octahedron, otahedra, polyhedra, polyhedron, Stella, Stella 4d

A Cluster of Thirteen Rhombic Dodecahedra, and Three Other Related Polyhedra

$
0
0

13 Rhombic Dodeca

One of the thirteen rhombic dodecahedra in this cluster cannot be seen, for it is hidden in the middle. The other twelve are each attached to a face of the central rhombic dodecahedron.

If one then creates the convex hull of this cluster — the smallest convex polyhedron which can contain it — this is the result:

Convex hull before TTMFR

This polyhedron has fifty faces:  the six square faces of a cube, the eight triangular faces of an octahedron, the twelve rhombic faces of a rhombic dodecahedron, and twenty-four rectangles to fill the gaps between the other faces.

This fifty-faced polyhedron also has an interesting dual, with 48 faces, all of which are kites. Half of these 48 kites are of one type, and arranged into eight panels of three kites each, while the other half are arranged into six panels of four kites each:

48 kites

Returning to the fifty-faced polyhedron, two images above, here is what happens if one tries to make each face as regular as possible:

Unnamed

In this polyhedron, the six squares are still squares, the eight triangles are still regular, and the twelve rhombi are still rhombi, although these rhombi are wider than before. The 24 rectangles, however, have now been transformed into isosceles trapezoids.

[Software credit:  see http://www.software3d.com/Stella.php for more information about Stella 4d, the program I use to make these rotating images. A free trial download is available at that website.]


Filed under: Mathematics Tagged: cluster, convex hull, dual, geometry, mathematics, polyhedra, polyhedron, rhombic dodecahedron

A Polyhedral Demonstration of the Fact That Nine Times Thirty Equals 270, Along with Its Interesting Dual

$
0
0

30 times 9 is 270

It would really be a pain to count the faces of this polyhedron, in order to verify that there are 270 of them. Fortunately, it isn’t necessary to do so. The polyhedron above is made of rhombus-shaped panels which correspond to the thirty faces of the rhombic triacontahedron. Each of these panels contains nine faces: one square, surrounded by eight triangles. Since (9)(30) = 270, it is therefore possible to see that this polyehdron has 270 faces, without actually going to the trouble to count them, one at a time.

The software I used to make this polyhedron may be found at http://www.software3d.com/Stella.php, and is called Stella 4d. With Stella 4d, a single mouse-click will let you see the dual of a polyhedron. Here’s the dual of the one above.

30 times 9 is 270 -- the dual

This polyhedron is unusual, in that it has faces with nine sides (enneagons, or nonagons), as well as fifteen sides (pentadecagons). However, these enneagons and pentadecagons aren’t regular — yet — but they will be in the next post.


Filed under: Mathematics Tagged: arithmetic, dual, duality, geometry, mathematics, multiplication, multiply, nine, random, rhombic triacontahedron, thirty

An Alteration of the Icosahedron/Dodecahedron Compound

$
0
0

Dual of Convex hull

The dual of the icosahedron is the dodecahedron, and a compound can be made of those two solids. If one then takes the convex hull of this solid, the result is a rhombic triacontahedron. One can then made a compound of the rhombic triacontahedron and its dual, the icosidodecahedron — and then take the convex hull of that compound. If one then makes another compound of that convex hull and its dual, and then makes a convex hull of that compound, the dual of this latest convex hull is the polyhedron you see above.

I did try to make the faces of this solid regular, but that attempt did not succeed.

All of these polyhedral manipulations were were performed with Stella 4d:  Polyhedron Navigator, available at http://www.software3d.com/Stella.php.


Filed under: Mathematics Tagged: compound, convex hull, dodecahedron, dual, geometry, icosahedron, icosidodecahedron, mathematics, polyhedra, polyhedron, rhombic triacontahedron

A Polyhedral Investigation, Starting with an Augmentation of the Truncated Octahedron

$
0
0

If one starts with a central truncated octahedron, leaves its six square faces untouched, and augments its eight hexagonal faces with trianglular cupolae, this is the result.

AUGMENTED TRUNCTAED OCTAHEDRON

Seeing this, I did a quick check of its dual, and found it quite interesting:

DUAL OF AUGMENTED TRUNCATED OCTAHEDRON

After seeing this dual, I next created its convex hull.

Convex hull x

After seeing this convex hull, I next creating its dual:  one of several 48-faced polyhedra I have found with two different sets of twenty-four kites as faces, one set in six panels of four kites each, and the other set consisting of eight sets of three kites each. I think of these recurring 48-kite-faced polyhedra as polyhedral expressions of a simple fact of arithmetic: (6)(4) = (8)(3) = 24.

48 KITES AGAiN

I use Stella 4d (available at http://www.software3d.com/Stella.php) to perform these polyhedral transformations. The last one I created in this particular “polyhedral journey” is shown below — but, unfortunately, I cannot recall exactly what I did, to which of the above polyhedra, to create it.

Convex hull OF AUGMENTED CUBOCTAHEDRON


Filed under: Mathematics Tagged: augment, augmentation, convex hull, cupola, dual, truncated octahedron

A Collection of Unusual Polyhedra

$
0
0

In the post directly before this one, the third image was an icosahedral cluster of icosahedra. Curious about what its convex hull would look like, I made it, and thereby saw the first polyhedron I have encountered which has 68 triangular faces.

68 triangles Convex hull

Still curious, I next examined this polyhedron’s dual. The result was an unusual 36-faced polyhedron, with a dozen irregular heptagons, and two different sets of a dozen irregular pentagons.

dual of 68 triangles Convex hull -- this dual has 36 faces including 12 heptagons and 12 each of two types of pentagon

Stella 4d, which is available at http://www.software3d.com/Stella.php, has a “try to make faces regular” function, and I tried to use it on this 36-faced polyhedron. When making the faces regular is not possible, as was the case this time, it sometimes produce surprising results — and this turned out to be one of these times.

dual of the 68-triangle polyhedron after 'try to make faces regular' used

The next thing I did was to examine the dual of this latest polyhedron. The result, a cluster of tetrahedra and triangles, was completely unexpected.

dual of the dual of the 68-triangle polyhedron after 'try to make faces regular' used

The next alteration I performed was to create the convex hull of this cluster of triangles and tetrahedra.

Convex hull of that triangular mess

Having seen that, I wanted to see its dual, so I made it. It turned out to have a dozen faces which are kites, plus another dozen which are irregaular pentagons.

dual of the Convex hull of that triangular mess 12 kites and 12 irregular pentagons

Next, I tried the “try to make faces regular” function again — and, once more, was surprised by the result.

dozen kites and dozen pentagons after 'try to make faces regular' used

Out of curiosity, I then created this latest polyhedron’s convex hull. It turned out to have four faces which are equilateral triangles, a dozen other faces which are isosceles triangles, and a dozen faces which are irregular pentagons.

Convex hull Z

Next, I created the dual of this polyhedron, and it turns out to have faces which, while not identical, can be described the same way:  four equilateral triangles, a dozen other isosceles triangles, and a dozen irregular pentagons — again. To find such similarity between a polyhedron and its dual is quite uncommon.

dual of Convex hull Z

I next attempted the “try to make faces regular” function, once more. Stella 4d, this time, was able to make the pentagons regular, and the triangles which were already regular stayed that way, as well. However, to accomplish this, the twelve other isosceles triangles not only changed shape a bit, but also shifted their orientation inward, making the overall result a non-convex polyhedron.

TTMFR

Having a non-convex polyhedron on my hands, the next step was obvious:  create its convex hull. One more, I saw a polyhedron with faces which were four equilateral triangles, a dozen other isosceles triangles, and a dozen regular pentagons.

Convex hull

I then created the dual of this polyhedron, and, again, found myself looking at a polyhedron with, as faces, a dozen irregaular pentagons, a dozen identical isosceles triangles, and four regular triangles. However, the arrangement of these faces was noticeably different than before.

latest Convex hull

Given this difference in face-arrangement, I decided, once more, to use the “try to make faces regular” function of Stella 4d. The results were, as before, unexpected.

TTMFRA

Next, I created this latest polyhedron’s dual.

TTMFRA dual

At no point in this particular “polyhedral journey,” as I call them, had I used stellation — so I decided to make that my next step. After stellating this last polyhedron 109 times, I found this:

109 stellationsTTMFRA dual

I then created the dual of this polyhedron. The result, unexpectedly, had a cuboctahedral appearance.

Faceted Dual

A single stellation of this latest polyhedron radically altered its appearance.

stellation Faceted Dual

My next step was to create the dual of this polyhedron.

dual Faceted Stellated Poly

This seemed like a good place to stop, and so I did.


Filed under: Mathematics Tagged: convex hull, dual, geometry, mathematics, polyhedra, polyhedron, stellate, stellation

An Unusual Presentation of the Icosahedron/Dodecahedron Base/Dual Compound

$
0
0

Leonardo Icosahedron

In this model, the usual presentation of the icosahedron/dodecahedron dual compound has been altered somewhat. The “arms” of star pentagons have been removed from the dodecahedron’s faces, and the icosahedron is rendered “Leonardo-style,” with smaller triangles removed from each of the faces of the icosahedron, with both these alterations made to enable you to see the model’s interior structure. Also, the dodecahedron is slightly larger than usual, so that its edges no longer intersect those of the icosahedron.

This model was made using Stella 4d, software you can obtain for yourself, with a free trial download available, at http://www.software3d.com/Stella.php.


Filed under: Mathematics Tagged: base, compound, dodecahedron, dual, geometry, icosahedron, mathematics, polyhedra, polyhedral, polyhedron

A Polyhedral Journey, Beginning with the Snub Cube / Pentagonal Isositetrahedron Base/Dual Compound

$
0
0

The snub cube and its dual make an attractive compound. Since the snub cube is chiral, its chirality is preserved in this compound.

Penta Icositetra & snub cube compound

If you examine the convex hull of this compound, you will find it to be chiral as well.

Convex hull of snub cube& dual compound

Here is the mirror image of that convex hull:

Convex hull mirror image

These two convex hulls, of course, have twin, chiral, duals:

dual of Convex hull of snub cube& dual compound

Dual of Convex hull mirror image

The two chiral convex hulls above (the red, blue, and yellow ones), made an interesting compound, as well.

Compound of enantiomorphic pair not dual

This is also true of their chiral duals:

Compound of enantiomorphic pair

I next stellated this last figure numerous times (I stopped counting at ~200), to obtain this polyhedron:

Stellated Compound of enantiomorphic pair dual

After seeing this, I wanted to know what its dual would look like — and it was a nice polyhedron on which to end this particular polyhedral journey.

dual of Stellated Compound of enantiomorphic pair dual

I  make these transformations of polyhedra, and create these virtual models, using a program called Stella 4d. If may be purchased, or tried for free, at http://www.software3d.com/Stella.php.


Filed under: Mathematics Tagged: chiral, chirality, compound, convex hull, dual, geometry, mathematics, pentagonal icositetrahedron, polyhedra, polyhedron, snub cube, stellate, stellation
Viewing all 76 articles
Browse latest View live